Plasma and Surface Technologies for Energy Applications & Sustainability

Stefan Saager

Manufacturing World 2024, Tokyo

Fraunhofer Society – Bridging basic research and industrial development Applied Research in Germany

world's leading applied research organization, founded in 1949

76 institutes and research institutions

approx. 32 000 employees

headquarter in Munich

each institute has its own core competences and act as individual profit center on the market

Fraunhofer Institute for Electron Beam and Plasma Technology FEP

The Institute in Figures

Employees	196 incl. stude
Total budget	30.7 M€
Industry returns	11.6 M€
Public funding	6.2 M€
Investments	2.1 M€

(April 2024 | Figures from 2023)

Director

Prof. Dr. Elizabeth von Hauff

Core competences

Electron Beam Technologies

Sputter Technologies

Plasma Surface Technologies

Technological Key Components

Industry Solutions

Energy and Sustainability

Smart Building

Smart Farming

Cultural Heritage and Preservation

Packaging

Mobility

Life Sciences

Environmental Technologies

Optic, Sensorics and Electronics

Mechanical Engineering

FEP

Key components Integrated Packages

FEP

Platforms for Developing Coating Technologies

Lab-Scale Infrastructure

Process Development & Feasibility Studies

Upscaling & Pilot Production

Fraunhofer FEP process technologies

Large area, in-line configuration

Surface treatment (plasma, ion, bias, electron beam, flash la	mp annealing)		
High-rate evaporation (boat, inductive heating, electron beam, p	olasma assisted)		
Magnetron sputtering (DC, pulsed, hybrid, dual magnetron, read	tive & non-reactive)		
High-rate PECVD (magPECVD, arcPECVD)			
Non-vacuum processes (slot die, electron beam)			
Gas Phase Condensation for nanoparticle generation			
Process control (in-line spectrometer, plasma emission, pla	asma impedance)		
R&D	pilot	industrial	
© Erauphofor EEP			Eraunho

FEP

Substrate Form Factors at Fraunhofer FEP

Process development on different substrate geometries and surfaces

		Method	max. substrate size			Mate	rial		Thickness
Roll-to-roll	00	Sputtering Electron beam evaporation	300 – 600 mm width			e glass			7 μm 200 μm
Sheet-to-shee	t	Inline sputtering (planar, tubular) magPECVD	600 x 1200 mm² 650 x 750 mm²		- - - -	Flexible			50 µm 6 mm 120 mm
Sheets and strips		Electron beam evaporation	500 x 500 mm² 300 mm width	Metals	Polymer	amics	ass		15µm1.5 mm
3D objects		Sputter deposition PECVD	500 x 500 x 500 mm³			Cera	ש		-
Wafer		Sputter deposition (high rate)	Up to 300 mm diameter					Si	max. 20 mm

Materials Characterization

Microstructure

- Ultra-high resolution scanning electron microscopy (FE-SEM)
- Ion preparation of cross sections
- Metallography

Chemical composition and topography

- Glow discharge optical emission spectrometry (GD-OES)
- Energy dispersive spectrometry (EDS)
- Atomic force microscopy (AFM)

Layer properties

- Permeation measurement (WVTR, OTR)
- Measurement of hardness (nanoindentation technique)
- Optical properties (spectroscopic ellipsometry)

https://www.fep.fraunhofer.de/en/Kernkompetenzen/analytik.html

Selected project and application examples

 Coatings for emerging & sustainable technologies

Technologies for life science applications

USE CASE: Deformable protective coatings for PEM BPP by R2R

By high-rate plasma-activated EB evaporation

- **Demands Low** contact resistance
 - High resistance to corrosion in a wide oxidizing potential range
 - Good formability without layer cracking
 - Low cost processing
- **Technology** High-power plasma processing + High-rate EB evaporation
 - Roll-to-Roll vacuum processing with thin metal strips (pre-coating)
- EBPVD: high throughput technology
- Increased ductility and formability by plasma-activated evaporation (SAD)

in cooperation with Fraunhofer IWU

Plasma effect on the microstructure of thin titanium layers

PEM – Proton Exchange Membrane

Page 12 6/13/2024 © Fraunhofer FEP

Scheffel et al., Surf. Coat. Technol. 287, 138 - 144 (2016) BPP – Bipolar Plate R2R – Roll-to-Roll

SAD – Spotless-arc Activated Deposition

EQUIPMENT: Device for Spotless arc Activated Deposition (SAD)

Water-cooled dual crucible

spotless arc using dual crucible (2 x Ti)

EB evaporation of Ti from 2 crucibles by jumping beam

Spotless arc discharge on two evaporating electrodes

Using dual crucible

- Cathode: high-melting metal, anode: same or other metal
- Plasma generation at cathode and anode
- Reactive processing possible
- Electrodes keep free by evaporation
- No layer deposition at any solid anode
- Optional DC / AC

PLATFORM: In-line electron beam and sputter Coater MAXI

In-line vacuum coating equipment for metal strips and sheets

- **Features** Single and double side coating of metal, plastic, glass or ceramic sheets with a maximum dimension of 500 mm × 500 mm
 - Coating of metal strips with a maximum width of 300 mm and a maximum thickness of 1.5 mm
 - Testing of key components under near-industrial conditions

https://www.fep.fraunhofer.de/en/Kernkompetenzen/Anlagentechnik/maxi.html

USE CASE: Deposition of Carbon Nano Tubes (CNTs)

By chemical vapor deposition (CVD)

 Heating by thermal radiation Addition of precursor gas -> CVD of CNTs
 Addition of precursor gas \rightarrow CVD of CNTs
Reached Double side deposition of CNTs in an inline mode
results Various substrate materials usable

Top side CNTs ~80 µm

Metal foil 13 µm

Bottom side CNTs ~80 µm

It's the blackest material I have ever seen!

Cross section of CNTSs deposited (partially damaged by preparation)

USE CASE: Deposition of Graphene Layers

By plasma-enhanced chemical vapor deposition in a roll-to-roll process

Process
 Double side coating of a steel strip with catalyst
 Rapid heating up to 1000°C by plasma device
 Addition of precursor gas → deposition of graphene by PE-CVD
 Reached results
 Formation of graphene has been proven by Raman
 Lower temperatures (650 °C) & higher throughputs (17m²/h) feasible
 Quality of the layers has a high need for optimization

"Plasma-Enhanced Chemical Vapor Deposition of Graphene Layers by a Roll-to-Roll Process"

2022 Technical Conference Proceedings of SVC https://doi.org/10.14332/svc22.proc.0026

USE CASE: Alternative protective coatings for PEM/electrolyser BPP

Performance-adjusted carbon coatings by anodic arc evaporation

High cell voltage and high anode potential \rightarrow corrosion sensitivity

- Demands for high corrosion resistance
- low contact resistance (target \leq 0.01 Ω cm²)

Approach

Challenge

- Thin doped ta-C layers (extremely corrosion-resistant and electrically conducting)
 - New plasma PVD method by anodic arc evaporation

Further use cases: Leveraging the high hardness for tribological applications

ta-C coatings (tetrahedral amorphous carbon)

- Hydrogen-free carbon coatings
- Dominating sp³ content
- Doping for enhanced electrical conductivity
- Hollow cathode arc source + Anodic arc evaporation
- Sublimation of graphite
- High ionization degree of vapor
- Motor driven material feed
- Relative high deposition rate (≈ 17 nm/s = 61 µm/h)
- Low droplet emission mode

"Diamond-like films of tetrahedral amorphous carbon deposited by anodic arc evaporation of graphite", Surf. Coat. Tech., 477 (2024) 130305 https://doi.org/10.1016/j.surfcoat.2023.130305

EQUIPMENT: Anodic Arc Evaporator

Features

- Plasma activated deposition
- High ionization degree (up to 100%)
- Relative low particle energies (compared to sputtering)
- High deposition rate
- Low droplet emission

/Evaporation of Indium-Tin-Oxide (ITO)

Transparent conductive oxides (TCO)

- Successfully with ITO, IZO, AZO
- Crystalline ITO layers at low temperature
- Excellent electrical and optical properties
- Extremely low roughness
 Ra = 0,3 nm at ITO 300 nm thick
- Dep. rate 300 500 nm m/min

Anodic arc evaporator 0 - 200 A, max. 20 kW Motor-driven evaporant feeding

Hollow cathode arc plasma source LAVOPLAS Large volume plasma source, 50 - 200 A

USE CASE: Electron Beam and Plasma Technology for EB-PVD

Equipment for advanced thermal barrier coating technologies for turbine components

- **Objectives**Application of enhanced thermal barrier coatings on turbine components for increased
performance: higher operation temperature, engine efficiency, reliability and lifetime.
-> Enabling technology for expanded process parameter windows
 - High-performance Electron Beam System ERIC-LVO
 - Plasma-activated evaporation to adjust microstructure at exotic process conditions

Technology

PLATFORM: Electron Beam Coating System NOVELLA

For processing of 3D parts

- **Features •** short-cycle plant with load-lock chamber
 - plasma-based electron gun (40 kV, 120 kW)
 - hollow cathode plasma sources (pre-treatment, plasma activation)
 - magnetron sputter sources (optional)
 - programmable substrate movement (translation + rotation)

https://www.fep.fraunhofer.de/content/dam/fep/en/documents/ Anlagenflyer/H14_NOVELLA_EN_net.pdf

<u>Piwko et al., J. Power Sources, 351 (2017) 183-191</u> Saager et al., Surf. Coat. Technol., 358 (2019) 586-593 Saager et al., Batteries, 9(2):75 (2023)

濍 Fraunhofer

PLATFORM:

Pilot R2R Coater *novoFlex® 600* Pilot

Features

Page 22

- Polymer films, metal foils up to 600 mm width
- Plasma assisted EBPVD, Sputtering, PECVD
- Inline pre-treatment, optical/electrical metrology

S2S Coater VERSA

Features

Sheets of metal, plastic, glass or ceramics up to 12×20 cm²

Fraunhofer

FEP

- Plasma assisted EBPVD, Sputtering, PECVD, thermal PVD
- Inert handling of air sensitive materials

Case study: Flexible glass A new substrate for emerging applications

USE CASE: Thin film technologies for energy saving in architecture

Thermochromic coatings and electrochromic devices

- Objectives Smart window technology for retrofitting existing buildings
 - R2R sputtering of thermochromic coatings on ultrathin flexible glass NEG G-Leaf, R2R sputtering of permeation barrier layers, transparent electrodes, optical layers
- Technology Reactive HiPIMS at elevated substrate temperatures
 - Precise inline property monitoring
- Results Roll-to-roll sputtering of thermochromic films on ultra-thin glass
 - Implementation of electrochromic windows in Vasakronan building in Sweden

PLATFORM: Laboratory Roll Coater FOSA labX

Sputtering & PECVD on flexible glass

Large area upscaling of roll-to-roll processes, pilot deposition

Features

Objectives

300 mm deposition width, substrate temperature up to 300 °C Pulsed sputtering, HIPIMS, optical and electric inline monitoring

FEP

PLATFORM: S2S Process line for flexible glass

Fraunhofer

FEP

New process technologies pave the way for flexible glass applications

Glass4Flex Grant no.: 13N14615 2019 – 2023

Selected project and application examples

- Coatings for emerging & sustainable technologies
- Technologies for life science applications

Phytosanitary Treatment of Seeds with Electrons

Control of pathogens to stop crop diseases and promote germination

Demands

Ecological (non-chemical) seed treatment on production scale

Technology

- Phytosanitary effect of electron seed treatment proven in long term studies together with German Federal Authorities
- > 20 years practical field experience by farmers in Germany
- No chemical agents, recommended for ecological farming
- Stops pollution of air, soil, water and protects users' health
- Mobile treatment plants with productivity up to 25 tons/hour
- New: Combination with biostimulants and nutrients dressings

Delivery of electrons by two linear sources

Singling of grains,

free fall during

All-round exposure by low-energy electrons

Physical disinfection Embryo remains of complete surface unaffected by

Penetration of episperm: precise depth control

Fraunhofer

FEP

treatment electrons
dose depth distribution in pericarp and testa

[1] Useful effects of nutrients dressings (source: <u>https://seedforward.com/de/maisguard/</u>) .

© Fraunhofer FEP

Confidential

Surface and Material Engineering

Assisted by non-thermal, low-energy electron beam technology

Demands	sustainable biobased material engineering
	Glutaraldehyde-free preparation of biological tissue for medical devices like pericardial tissue applied to biological heart valve prostheses (improve functional life)
	Biogenic material development via cells and microorganisms
	Resource-saving, climate-neutral material innovations
Technologies	Multi-step biological tissue preparation (patented SULEEI-Processing)
	Development of living building materials by scalable production of biogenic components via phototrophic microorganisms (substitution processes, assisted by EB technology)
	Development of biohybrid or synthetic cell-based tissues (assisted by EB-technology)

FEP Technologies for Hygienization

Applications from public sector up to medical technology

Demands	 Gentle sterilization of medical technical and pharmaceutical products
	In-line suitable technologies
	Sustainable alternatives to traditional disinfection and sterilization techniques
	 Hygienization of surfaces in public environment, pharma industry as well as in the medical sector
Solutions	Disinfection and sterilization by low-energy electron-beam technology
	Direct and indirect UV-based technologies (UV disinfection, UV induced photoactivity
	 Hygienic cleaning up to disinfection by means of plasma activated water (PAW)
	Microbiological evaluation and individualized test setups in FEP lab unit

Biomedical Laboratory Unit

R&D Lab and service platform for customer specific requirements

Demands	 State of the art, smart lab unit for services and R&D in life sciences Equipment for microbiology, cell biology, biotechnology, chemistry, material and bio-analytics
Solutions	 Facility for the development of customer- and project-specific test regimes in accordance with DIN standards Expansion of the range of methods e.g. for testing the effectiveness of antimicrobial surfaces

Extension **to biological protection level 2** for testing in a realistic environment

Summary

Our offer:

Competences and R&D Service

- Thin-film layer and process development mainly by plasma assisted PVD & EBPVD, magnetron sputtering, CVD and PECVD
- Refinement of thin-films by flash lamp annealing
- Flexible glass handling and processing
- Layer stack modeling, design and transfer
- Process setup, adjustment and optimization
- Coatings with high reproducibility
- Up-scaling, sampling, technology transfer
- Key component development

\rightarrow Contract research, bilateral, exclusive

 \rightarrow R&D, Feasibility studies, Sampling, prototyping

We look forward to working with you from the concept phase right through to industrial implementation.

Fraunhofer Institute for Electron Beam and Plasma Technology FEP

Contact

Dr. Stefan Saager phone +49 351 2586-316 stefan.saager@fep.fraunhofer.de

Fraunhofer FEP Winterbergstraße 28 01277 Dresden, Germany

Foto: © Fraunhofer FEP / Fotograf: Jürgen Lösel